Jumat, 27 Maret 2020

Cara Membaca Pin Soket CDI Motor Honda

Cara Membaca Pin Soket CDI Motor Honda - Berikut ini akan dijelaskan mengenai cara membaca terminal CDI pada motor HONDA.

Berikut Cara Membaca Pin Socket CDI Motor Honda


1. Honda Tiger

Pin Soket Tiger
  • 1. Massa
  • 2. Pulser
  • 3. Koil
  • 4. Massa
  • 5. Spul
  • 6. Input Kunci Kontak

2. Mega PRO

Pin Soket Mega PRO
  • 1. Massa
  • 2. Pulser
  • 3. Koil
  • 4. Nol
  • 5. 12 Volt
  • 6. Nol

3. Honda Star, Astrea Prima, Astrea Grand, Supra, Supra X, Supra Fit, Revo

Pin Soket Star, Astrea, Supra Series & Revo
  • 1. Massa
  • 2. Pulser
  • 3. Kunci Kontak
  • 4. Spul Input
  • 5. Koil

4. Honda Revo 110 / Blade

Pin Soket Revo 110 / Blade
  • 1. Aki (+) 12 Volt
  • 2. Koil
  • 3. Pulser
  • 4. Nol
  • 5. Massa

5. Karisma 125

Pin Soket Karisma 125
  • 1. Koil
  • 2. Massa
  • 3. 12 Volt
  • 4. Pulser

6. CBR 150

Pin Soket CBR 150
  • 1. 12 Volt
  • 2. Pulser
  • 3. Tachometer
  • 4. Massa
  • 5. Koil

7. Kirana

Pin Soket Kirana
  • 1. 12 Volt
  • 2. Pulser
  • 3. Massa
  • 4. Koil

8. Vario/Click

Pin Soket Honda Vario
  • 1. 12 Volt
  • 2. Starter
  • 3. Pulser
  • 4. Nol
  • 5. Massa Temp
  • 6. Massa F/S
  • 7. Relay
  • 8. Choke
  • 9. Nol
  • 10. Koil
  • 11. Nol
  • 12. Nol
  • 13. Nol
  • 14. Temp
  • 15. Nol
  • 16. Nol
  • 17. Foot Switch
  • 18. Temp Indikator

9. Honda BEAT

Pin Soket Honda Beat
  • 1. Starter
  • 2. Pulser
  • 3. Nol
  • 4. Nol
  • 5. Foot Switch
  • 6. Cooke
  • 7. Relay
  • 8. 12 Volt
  • 9. Massa
  • 10. Koil

10. Sonic 125

Pin Soket Sonic 125
  • 1. 12 Volt
  • 2. Pulser
  • 3. Massa
  • 4. Koil

Jumat, 06 Desember 2019

Sistem Pengapian CDI Motor & Cara Kerjanya

Sistem Pengapian CDI Motor & Cara Kerjanya - Seperti yang telah di ketahui bahwa sistem pengapian konvensional memanfaatkan gerakan mekanik kontak platina untuk menghubung dan memutus arus primer. Maka platina mudah sekali aus, yang menyebabkan platina memerlukan penyetelan / perbaikan dan penggantian setiap periode tertentu.

Hal ini merupakan kelemahan dari sistem pengapian konvensional. Dalam perkembangannya, ditemukan sistem pengapian elektronik sebagai penyempurna sistem pengapian. Salah satu sistem pengapian elektronik yang populer adalah sistem pengapian CDI (Capacitor Discharge Ignition).

Pengertian Sistem Pengapian CDI (Capacitor Discharge Ingnition)


Sistem pengapian CDI merupakan sistem  pengapian elektronik yang bekerja dengan memanfaatkan pengisian (charge) dan pengosongan (discharge) muatan kapasitor. Proses pengisian dan pengosongan muatan kapasitor dioperasikan oleh saklar elektronik seperti halnya kontak platina (pada sistem pengapian konvensional).
CDI (Capacitor Discharge Ignition)

Jika dibandingkan pada mobil, sistem pengapian CDI lebih populer digunakan pada motor, karena lebih simple sehingga lebih cocok jika diletakan pada sepeda motor yang memiliki ruang terbatas.

Baca Juga : Komponen Pengapian CDI Motor Beserta Fungsinya

Sistem pengapian CDI lebih menguntungkan dan lebih baik jika dibandingkan dengan sistem pengapian konvensional yang masih menggunakan platina (contact breaker point).

Pada sistem pengapian CDI tidak lagi diperlukan penyetelan, seperti penyetelan celah platina pada sistem pengapian konvensional. Komponen platina telah digantikan oleh thyristor sebagai saklar elektronik dan pulser (pick-up coil) yang dipasang dekat rotor (stator coil).

Dengan sistem pengapian CDI, tegangan pengapian yang dihasilkan lebih besar (sekitar 40 KV) dan stabil sehingga proses pembakaran campuran bensin dan udara semakin sempurna, dengan demikian terjadinya endapan karbon pada busi juga bisa dihindari.

Berikut komponen pada sistem pengapian CDI (beberapa diantaranya terkadang tidak dipakai karena sesuatu hal) :

1
Kumparan pengisian (charging coil).
9
Pengatur/penyetabil tegangan (voltage regulator/stabilizer).
2
Kumparan pemicu (trigger/pulser coil).
10
Transformator penaik tegangan (voltage step up transformer).
3
Penyearah (rectifier).
11
Pengubah tegangan (voltage converter/inverter).
4
Baterai (battery).
12
Pelipat tegangan (voltage multiplier/inverter).
5
Sekering (fuse).
13
Kumparan pengapian (ignition coil).
6
Kunci kontak (contact switch).
14
Kabel busi (spark plug cable).
7
Kondensator (capacitor).
15
Busi (spark plug).
8
Saklar elektronik (SCR).
16
Sistem pengawatan (wiring system).

Cara Kerja Sistem Pengapian CDI Motor



Ketika kunci kotak ON komponen CDI belum bekerja, ketuka mesin mulai dinyalakan koponen CDI baru mulai bekerja. Dimana akan menghasilkan tegangan dari pulser (pick up coil) yang akan digunakan untuk pemicu ke pengguat tegangan serta SCR.

Disisi lain untuk arus dari accu akan mengalir ke fuse (sekering) dan mengalir ke kunci kontak yang kemudian ke penguat tegangan pada CDI. Pada tegangan dari Accu sebesar 12 DC volt akan naik menjadi 100 - 400 AC volt, setelah itu dialirkan melalui dioada sehingga tegangan akan menjadi 100 - 400 DC volt yang mana akan tersimpan pada Capasitor.

Apabila arus ke kumparan primer terputus, maka yang terjadi induksi listrik mutual di kedua kumparan primer dan sekunder yang nantinya akan dikirim ke busi untuk menghasilkan percikan api. Pada percikan api tersebut berfungsi untuk proses pembakaran bahan bakarnya.

Kamis, 28 November 2019

Fungsi Tahanan Ballast (Ballast Resistor) Pada Koil Pengapian

Fungsi Tahanan Ballast (Ballast Resistor) Pada Koil Pengapian - Pada sistem pengapian yang menggunakan platina, terdapat rangkaian yang dilengkapi dengan resistor atau kawat resistor yang dikenal dengan nama tahanan ballast (ballast resistor). Tahanan ballast diletakkan antara kunci kontak dan kutub primer koil (+). Secara umum fungsi tahanan pada sistem kelistrikan adalah untuk menahan arus primer.
Tahanan Ballast & Ignition Coil

Pada sistem pengapian arus tidak boleh melebihi 4 ampere. Akibat jika arus melebihi 4 ampere yaitu :
  • Kontak pemutus (platina) lebih cepat aus.
  • Koil cepat panas, jika panas berlebihan koil bisa meledak. 

Untuk itulah diperlukan tahanan ballast yang berfungsi untuk membatasi arus primer agar tidak melebih 4 ampere. Dengan arus yang besar tentu akan membuat koil menjadi cepat panas.

Ketika igniton coil panas maka mengaikibatkan induksi yang dihasilkan tidak maksimal. Umumnya jika koil cepat panas mengakibatkan mobil cepat mogok.

Terkadang ada pengemudi yang membawa kompres untuk mendinginkan ignition coil. Karena jika panasnya lebih besar lagi bisa menyebabkan koil meledak.

Rangkaian Sistem Pengapian Konvensional Yang Menggunakan Tahanan Ballast :

Rangkaian sistem pengapian dengan tahanan ballast

Keterangan :

Tahanan ini dipasang antara kunci kontak dan koil, tahanan ini mengurangi tegangan pada koil yang memang dirancang untuk bekerja di bawah tegangan baterai 12 volt.

Pada saat starter arus primer tidak perlu dilewatkan ballas resistor, karena arusnya sendiri sudah berkurang akibat adanya beban starter. 

Apabila dilewatkan tahana ballast maka arus akan berkurang lagi (semakain kecil), dan kemampuan pengapian juga tidak maksimal, ini akan mengakibatkan mesin sulit hidup. 

Untuk itulah pada saat posisi ST, arus dari baterai menuju terminal ST kunci kontak langsung ke + koil tanpa melalu ballast resistor.

Setelah mesin hidup dan kunci kontak kembali pada posisi IG, maka arus primer kembali melalui terminal IG Kunci kontak dan melalui ballast resistor. Dengan demikian tegangan pengapian saat start dan saat engine hidup relatif sama.

Untuk jenis kunci kontak yang tidak terdapat ST1 dan ST2, atau hanya terdapat terminal ST saja, maka perlu ditambah dioda, atau relay diantara terminal ST dan + koil. 

    Pada beberapa jenis tahanan ballast sensitif terhadap panas & mengakitbatkan :
    • 1. Saat engine dihidupkan pada putaran rendah, kontak platina menutup relatif lebih lama daripada saat kecepatan tinggi.
    • 2. Pada kecepatan rendah, tahanan ballast menjadi panas. Kondisi ini menyebabkan naiknya nilai tahanan pada tahanan ballast, dengan demikian arus yang mengalir pada kontak platina menurun, Cara ini membantu memperpanjang umur kontak platina.
    • 3. Pada putaran tinggi, tahanan ballast mempunyai suhu yang rendah, hal ini memungkinkan mengalirnya arus yang besar, yang membantu kerja koil.

    Senin, 28 Oktober 2019

    Komponen Pada Distributor (Delco) Beserta Fungsinya

    Komponen Pada Distributor (Delco) Beserta Fungsinya - Distributor atau sering juga disebut delco merupakan salah satu komponen pada sistem pengapian konvensional mobil. Distributor berfungsi untuk mendistribusikan induksi tegangan tinggi sekunder koil ke busi sesuai dengan urutan pengapian mesin. Pada unit distributor mobil terdapat banyak komponen yang memiliki fungsi tersendiri.

    Sistem pengapian sendiri terdapat beberapa jenis dan macam - macam sistem pengapian, untuk penjelasan tentang jenis & macam - macam sistem pengapian dapat dilihat disini.


    Untuk komponen pada sistem pengapian sendiri, setiap jenis sistem pengapian memiliki komponen yang berbeda - beda. Salah satunya komponen penting pada sistem pengapian adalah distributor, komponen distributor terdapat pada sistem pengapian konvensional dan semi transistor.

    Komponen - Komponen Pada Distributor / Delco Beserta Fungsinya


    1. Tutup distributor
    Tutup distributor berfungsi sebagai terminal yang terhubung dengan kabel busi dan kabel sekunder coil. Pada tutup distributor terdapat terminal kabel tegangan tinggi, terminal input dan terminal output sesuai dengan jumlah silinder. Jadi untuk mesin 4 silinder mempunyai 1 terminal input dan 4 terminal output. 

    Setiap terminal pada tutup distributor akan bergesekan dengan rotor untuk menerima tegangan tinggi, dari terminal tersebut listrik disalurkan ke busi melalui kabel tegangan tinggi. Sebagai tempat terminal tegangan tinggi maka tutup distributor terbuat dari bahan isolator yang baik agar tidak ada kebocoran arus tegangan tinggi antar terminal dengan bodi/rumah distributor.
    Tutup Distributor

    2. Rotor
    Rotor berfungsi untuk menerima tegangan tinggi dari coil dan mendistribusikan tegangan tersebut ke masing - masing terminal pada distributor cap (tutup distributor). Rotor memiliki konduktor yang terhubung dengan kabel sekunder ignition coil dan ujung lainya terbebas.

    Cara kerja rotor yaitu dengan memanfaatkan putaran poros distributor. Saat poros distributor berputar, rotor juga ikut berputar. Putaran itu akan mendistribusikan listrik tegangan tinggi ke masing-masing busi.
    Rotor

    3. Poros Disributor
    Poros distributor terletak di bagian tengah distributor. Dibagian bawah poros, terhubung dengan pompa oli yang terkoneksi dengan crankshaft mesin. Sehingga putaran poros dipengaruhi oleh putaran mesin.

    Selain itu, poros ini juga memiliki sebuah cam atau nok yang berfungsi untuk menekan kaki platina agar terjadi pemutusan arus. Dibagian atas, poros terhubung dengan rotor yang akan mendistribusikan listril tegangan tinggi ke masing-masing busi.
    Letak Poros Distributor

    4. Platina (Contact Breaker)
    Platina berfungsi untuk memutuskan arus primer coil untuk menghasilkan tegangan sekunder yang sangat tinggi melalui proses induksi. Dinamakan platina karena komponen ini memiliki contact point berbahan lohgam platina. Yang membuat platina terbuka adalah nok / cam pada poros distributor, sedangkan yang membuat platina menutup adalah pegas. 

    Saat platina menutup tahanan harus nol dan persinggungan permukaan harus baik agar arus listrik dapat mengalir dengan cepat mencapai maksimal, dan kemagnetan inti koil cepat terbentuk. Sedangan saat platina terbuka maka arus listrik harus cepat terputus agar koil dapat menghasilkan induksi tegangan tinggi secara maksimal. 

    Lama kontak pemutus menutup merupakan faktor penting dalam pembentukan induksi tegangan tinggi. Lama kontak pemutus menutup diukur dalam derajat dan sering disebut cam dwell angle (CDA). Besar cam dwell angle (CDA) berhubungan terbalik dengan celah platina, bila celah platina besar maka CDA menjadi kecil, sebaliknya bila celah platina kecil maka CDA (cam dwell angle) besar.
    Platina (Contact Breaker)


    5. Breaker plate
    Breaker plate merupakan sebuah tatakan tempat platina diletakan. Komponen ini dapat digerakan untuk mengubah timing pengapian. Hal itu karena breaker plate terhubung dengan advancer yang berfungsi mengubah timing pengapian.

    Saat breaker plate bergeser, menyebabkan posisi platina juga ikut bergeser. Hal itu berakibat timing pengapian yang lebih awal ataupun lebih lambat. Dikomponen ini pula penyetelan celah platina dilakukan.


    6. Capasitor / Kondensor
    Saat kontak platina terputus, akan menimbulkan percikan di celah kontak tersebut. Tentu hal ini bisa berakibat pada hasil pengapian. Kapasitor atau kondensor adalah komponen elektronika yang dapat menyerap arus listrik yang berfungsi untuk menyerap arus induksi primer koil (electromotive force).

    Saat kontak pemutus arus terbuka sehingga percikan api pada permukaan kontak dapat dikurangi, kontak pemutus tidak cepat aus/kotor/terbakar. Selain itu dengan terserapnya electromotive force dari induksi koil primer kecepatan perubahan kemagnetan lebih tinggi, sehingga arus induksi pada sekunder koil lebih besar, percikan api lebih besar, pembakaran lebih sempurna, tenaga mesin besar dan bahan bakar lebih hemat.
    Capasitor / Kondensor

    7. Poros Nok
    Poros nok pemutus arus berfungsi untuk menekan rubbing block platina sehingga platina terbuka. Terbukanya platina menyebabkan aliran listrik pada primer koil terputus, kemagnetan inti koil hilang, terjadi induksi baik pada primer koil maupun sekunder koil.

    Tegangan induksi sekunder koil yang sangat tinggi  dialirkan ke tutup distributor, rotor, kabel tegangan tinggi dan busi sehingga terjadi percikan api pada busi. Jadi saat pemutus arus terbuka akan terjadi percikan api di busi.

    Pada motor 4 tak, api busi diperlukan tiap 2 putaran engkol yaitu saat akhir kompres, untuk itu dibuat perbandingan putaran engkol dengan poros nok pemutus sebesar 2:1, artinya poros engkol berputar 2 kali (720 derajat) maka poros nok berputar 1 kali (360 derajat).

    Jumlah tonjolan nok sesuai dengan jumlah silinder, artinya untuk motor 1 silinder mempunyai nok 1 buah, sedang motor 4 silinder mempunyai nok 4 buah. Antar poros penggerak dan nok tidak terikat mati. Kedua bagian tersebut dihubungkan dengan centrifugal advancer, yaitu mekanisme yang digunakan untuk mengajukan saat pengapian.

    Platina membuka akibat tekanan poros nok, saat platina mulai membuka maka terjadi percikan api busi. Keausan poros nok yang tidak merata menyebabkan waktu pembukaan platina tidak stabil, sehingga saat percikan api juga tidak stabil atau saat pengapian tidak stabil.

    8. Centrifugal advancer
    Centrifugal advancer merupakan mekanisme yang berfungsi mengajukan saat pengapian berdasarkan putaran mesin. Centrifugal advancer terdiri dari 3 komponen utama yaitu : bobot centrifugal, pegas dan driving plate.

    Saat putaran mesin bertambah maka gaya centrifugal yang dihasilakan juga bertambah, pegas akan memanjang mengimbangi gaya centrifugal yang dihasilkan.

    Gerakan bobot centrifugal mengungkit nok sehingga poros nok berputar searah putaran rotor, karena putaran nok searah maka nok lebih cepat bertemu dengan rubbing block, kontak pemutus lebih cepat terbuka, saat pengapian lebih maju.
    Centrifugal advancer

    9. Vacum advancer
    Kecepatan perambatan api hasil pembakaran dipengaruhi oleh beberapa faktor antara lain perbandingan campuran, atomisasi, tekanan campuran, temperatur campuran dan sebagainya. Saat kendaraan dipercepat campuran bahan bakar menjadi gemuk karena pada saat tersebut terjadi penyemprotan bahan bakar pada pompa percepatan.

    Campuran gemuk membutuhkan waktu pembakaran yang lebih lama dibanding campuran ideal, untuk itu agar tekanan maksimal hasil pembakaran tetap 108 setelah TMA maka saat pengapian harus dimajukan. 

    Prinsip pengajuan saat pengapian memanfaatkan perubahan kevakuman pada lubang throttle valve. Saat motor dipercepat kevakuman pada throttle valve naik, gaya dari kevakuman yang dihasilkan menggerakkan diafragma.

    Diafragma menggerakan dudukan kontak pemutus arus (breaker plate) berlawanan dengan putaran putaran poros nok, gerakan dudukan kontak pemutus arus lebih cepat membuka, sehingga saat pengapian juga lebih cepat/maju.
    Vacum advancer

    Senin, 21 Oktober 2019

    Komponen Pengapian CDI Motor Beserta Fungsinya

    Komponen Pengapian CDI Motor Beserta Fungsinya - Sistem pengapian elektronik (CDI) pada motor dibagi menjadi 2 yaitu : Sistem Pengapian Magnet Elektronik (CDI - AC) & Sistem Pengapian Baterai Elektronik (CDI - DC)

    Berikut Komponen Sistem Pengapian CDI Motor Beserta Fungsinya


    1. Baterai / Accu
    Baterai / accu / aki berfungsi sebagai penyedia arus bagi sistem kelistrikan yang ada pada kendaraan dengan jenis arus DC (arus searah). Selain itu accu atau baterai berfungsi untuk menyimpan arus yang dihasilkan oleh sistem pengisian pada kendaraan.

    Pada sistem pegapian CDI DC baterai berperan penting, karena digunakan sebagai sumber arus utama pada sistem pengapian CDI DC. Jika baterai mengalami kerusakan maka sistem pengapian tidak akan berjalan dengan baik.

    Tetapi pada sistem pengapian CDI AC baterai tidak berperan sebagai sumber utama, tetapi digunakan untuk sumber arus pada rangkaian kelistrikan, contohnya untuk starter elektrik.
    Accu / Baterai

    2. Spul (Stator Coil) Dan Rotor Magnet
    Spul dan rotor magnet berfungsi untuk merubah putaran dari poros engkol (crank shaft) mesin menjadi arus listrik searah (AC). Arus ini yang kemudian digunakan untuk sistem pengisian, mensuplai kelistrikan pada beban / lampu dan juga digunakan untuk mensuplai arus ke unit CDI (untuk tipe sistem pengapian CDI AC). 

    Spul dan rotor magnet terdiri dari 2 komponen, yaitu :
    • a. Komponen yang berputar (magnet rotor), magnet rotor berbentuk tromol yang terhubung ke poros engkol mesin. Pada sepeda motor, magnet rotor ini juga berfungsi sebagai fly wheel.
    • b. Komponen yang diam spul (stator coil), spul komponen yang berbentuk kumparan statis yang terletak didalam rotor magnet.
    Spul & Rotor Magnet

    3. Pulser (Pick Up Coil)
    Pulser (pick up coi) berfungsi untuk menghasilkan tegangan pulsa (signal) untuk mengontrol penguat tegangan (pada sistem CDI DC dan pengontrol atau pemicu SCR.

    Fungsi pulser yang lain pada motor yaitu sebagai penentu waktu CDI atau TCI untuk mematikkan listrik yang diteruskan ke proses pengapian sampai ke busi.

    Atau dapat dikatakan pulser berfungsi sebagai pendeteksi posisi piston motor berdasarkan posisi Pick Up pada magnet rotor yang selanjutnya akan dikirim ke CDI maupun TCI.
    Pulser

    4. Kunci Kontak (Ignition Switch)
    Kunci kontak berfungsi sebagai saklar utama untuk menghubung dan memutus (On-Off) rangkaian pengapian dan rangkaian kelistrikan lainnya pada motor.

    5. Voltage Converter
    Voltage converter atau pengkonversi tegangan diperlukan untuk memaksimalkan arus discharge, prinsip kerja sistem pengapian CDI berbeda dengan sistem pengapian konvensional yang masih menggunakan platina.

    Pada sistem pengapian konvensional, induksi pada coil akan terjadi ketika platina memutuskan arus primer coil. Tetapi pada sistem pengapian CDI, induksi akan terjadi ketika arus primer dialiri oleh arus discharger.

    Agar induksi berjalan dengan maksimal dan cepat, maka arus discharge yang mengalir ke kumparan primer juga harus bertegangan lebih tinggi.

    Converter inilah yang memungkinkan arus discharge memiliki tegangan lebih tinggi. Dalam satuan milisecon, tegangan listrik dari spul bisa dinaikan menjadi sekitar 300 Volt untuk mengisi Capasitor.

    6. Unit CDI  (Capacitor Discharge Ignition)
    CDI (Capacitor Discharge Ignition) pada sepeda motor sangatlah mempengaruhi performa sepeda motor. Sistem pengapian yang baik bisa membakar dengan tuntas dan sempurna sehingga panas yang dihasilkan lebih optimal.
    CDI (Capacitor Discharge Ignition)

    CDI merupakan serangkaian komponen elektronik yang berfungsi sebagai saklar rangkaian primer pengapian, menghubungkan dan memutuskan arus listrik yang dimanfaatkan untuk melakukan pengisian (charge) dan pengosongan (discharge) muatan kapasitor.

    Kemudian dialirkan melalui kumparan primer koil pengapian untuk menghasilkan arus listrik tegangan tinggi pada kumparan sekunder dengan cara induksi elektromagnet.
    Basic Circuit CDI AC
    Keterangan :
    • 1. Dari Sumber Tegangan (Alternator)
    • 2. Dari Signal Generator (Pick Up Coil)
    • 3. Ke Ignition Coil
    • 4. Massa CDI

    7. Sekering / Fuse
    Fuse atau sekering berfungsi sebagai pengaman rangkaian listrik ketika terjadi konsleting listrik. Begitu pula pada sistem pengapian CDI (terutama pada CDI - DC).

    Sekering juga berungsi untuk mencegah terjadinya kerusakan pada komponen - komponen kelistrikan lainnya ketika terjadi konsleting atau terjadi kelebihan arus listrik.

    8. Koil Pengapian (Ignition Coil)
    Koil berfungsi untuk menaikkan tegangan yang diterima dari sumber tegangan spul dan magner rotor menjadi tegangan tinggi yang diperlukan untuk pengapian.

    Dalam koil pengapian terdapat kumparan primer dan kumparan sekunder yang dililitkan pada tumpukan-tumpukan plat besi tipis.

    Diameter kawat pada kumparan primer 0,6 - 0,9 mm dengan jumlah lilitan 200 - 400 kali, sedangkan diameter kawat pada kumparan sekunder 0,05 - 0,08 mm dengan jumlah lilitan sebanyak 2000 - 15.000 kali.

    Untuk mengalirkan tegangan tinggi dari kumparan sekunder ke busi, digunakan kabel tegangan tinggi (kabel busi) yang terpasang antara terminal sekunder dengan busi.
    Koil Pengapian

    9. Kabel Busi
    Kabel busi berfungsi sebagai penyalur listrik bertegangan tinggi dari ignition coil. Kabel busi memang memiliki bentuk seperti kabel pada umumnya, namun kabel ini memiliki diameter lebih besar, mungkin bisa sampai 5 mm.

    Biasanya kabel busi menggunakan satu helai kawat tembaga dengan diameter besar, dan ada beberapa helai serabut tembaga yang mengitarinya (tanpa bersentuhan). 

    10. Busi (Spark Plug)
    Busi (spark ignition) berfungsi untuk memercikkan bunga api yang nantinya percikkan bunga api yang dihasilkan ini digunakan untuk membakar campuran bahan bakar dan udara di dalam silinder untuk menghasilkan tekanan atau usaha.
    Busi

    11. Cop Busi
    Cop busi adalah ujung dari kabel busi yang ditempelkan pada ujung busi. Meski fungsinya hanya sebagai penghubung antara kabel busi dan busi, bentuk cop busi ini juga tak boleh sembarangan.

    Karena kalau kawat dari kabel busi tidak melekat dengan sempurna ke konduktor didalam cop busi maka tegangan yang sampai ke busi menjadi lebih kecil.
    Cop Busi

    Sistem Pengapian CDI AC Dan CDI DC Motor + Cara Kerjanya

    Sistem Pengapian CDI AC Dan CDI DC Motor + Cara Kerjanya - CDI (Capacitor Discharge Ignition) adalah jenis sistem pengapian pada kendaraan bermotor yang memanfaatkan arus pengosongan muatan (discharge current) dari capasitor / kondensator, sebagai pencatu daya kumparan pengapian (ignition coil).

    Sistem Pengapian Elektronik CDI Pada Motor Dibagi Menjadi 2 Jenis


    1. Sistem Pengapian Magnet Elektronik CDI - AC

    Sistem pengapian CDI - AC merupakan dasar dari sistem pengapian CDI, dan menggunakan pencatu daya dari sumber Arus listrik bolak-balik yang berasal dari spul motor (dinamo AC/alternator).  sehingga arus yang digunakan merupakan arus bolak-balik (AC).

    Cara Kerja Sistem Pengapian CDI - AC

    Skema Sistem Pengapian CDI - AC

    a. Saat Kunci Kontak OFF

    Kunci kontak dalam posisi terhubung dengan massa, Arus listrik yang dihasilkan sumber tegangan (Alternator) dibelokkan ke massa melalui kunci kontak. Tidak ada arus yang mengalir ke unit CDI sehingga sistem pengapian tidak bekerja dan motor tidak dapat dihidupkan.

    b. Saat Kunci Kontak ON Mesin Hidup

    Saat mesin mulai hidup maka magnet rotor pada motor akan berputar mengikuti putaran krug as dalam mesin, dari putaran tersebut timbulah tegangan, tegangan yang dihasilkan magnet rotor ini bernilai 100 - 400 volt. Lalu diode di dalam unit CDI akan merubah arus menjadi arus AC (Searah), kemudian arus ini akan mengisi kapasitor sehingga muatan kapasitor penuh.

    Capasitor tidak akan melepaskan arus di dalamnya sebelum SCR (Silicon Controlled Rectifier) aktif. Untuk mengaktifkan SCR maka terminal gate pada SCR harus mendapatkan sinyal tegangan positif terlebih dahulu sebagai pemicu (trigger).

    Signal yang digunakan sebagai pemicu (trigger) didapatkan dari signal pulser (pick up coil). Spul akan memberikan signal tegangan ketika tonjolan pada rotor magnet melewati spul. Ketika terminal gate mendapatkan tegangan positif dari tegangan spul maka terminal anoda dan katoda pada SCR akan terhubung. 

    Ketika terminal anoda dan katoda terhubung maka capasitor akan melepaskan arus (discharge) dengan cepat ke kumparan primer koil pengapian sehingga terjadi induksi pada kumparan primer koil.

    Pada kumparan primer koil pengapian dihasilkan tegangan induksi sendiri sebesar 200 - 300 V. Akhirnya pada kumparan sekunder koil pengapian akan timbul induksi tegangan tinggi sebesar � 20 KVolt ? disalurkan melalui kabel busi ke busi untuk diubah menjadi pijaran api listrik.


    2. Sistem Pengapian Baterai Elektronik CDI - DC

      Sistem pengapian CDI - DC menggunakan pencatu daya dari sumber arus listrik searah (misalnya dinamo DC, Batere, maupun Accu). Arus listrik yang berasal dari accu masih belum mampu digunakan untuk mencatu CDI tersebut, sehingga dalam CDI - DC ini masih membutuhkan rangkaian penaik tegangan yang disebut inverter.

      Cara Kerja Sistem Pengapian CDI - DC

      Skema Sistem Pengapian DC-CDI

      a. Saat Kunci Kontak OFF

      Hubungan sumber tegangan dengan rangkaian sistem pengapian terputus, tidak ada arus yang mengalir sehingga motor tidak dapat dihidupkan.

      b. Saat Kunci Kontak ON

      Kunci kontak menghubungkan sumber tegangan positif (+) Accu dengan rangkaian sistem pengapian, sehingga arus listrik dari baterai dapat disalurkan ke unit CDI (DC - DC Conventer).

      Ketika rotor alternator (magnet) berputar, reluctor ikut berputar. Pada saat reluctor mulai mencapai lilitan pick up coil, lilitan pick up coil akan menghasilkan sinyal listrik yang dimanfaatkan untuk mengaktifkan Switch Transistor (Tr) pada DC - DC Conventer.

      Kumparan primer dan sekunder (Kump.) pada DC - DC Conventer akan bekerja secara induksi menaikkan tegangan sumber ? disearahkan lagi oleh dioda (D) ? mengisi kapasitor (C) sehingga muatan kapasitor penuh.

      Sinyal yang dihasilkan lilitan pick up coil tersebut belum mampu membuka gerbang (Gate) Thyristor switch (SCR) sehingga SCR belum bekerja.

      Pada saat yang hampir bersamaan (saat pengapian), arus sinyal yang dihasilkan oleh signal generator (pick up coil) mampu membuka gerbang SCR sehingga SCR menjadi aktif dan membuka hubungan arus listrik dari kaki Anoda (A) ? Katoda (K).

      Hal ini akan menyebabkan kapasitor terdischarge (dikosongkan muatannya) dengan cepat ? melalui kumparan primer koil pengapian ? massa koil pengapian.

      Pada kumparan primer koil pengapian dihasilkan tegangan induksi sendiri sebesar 200 � 300 V. Akhirnya pada kumparan sekunder koil pengapian akan timbul induksi tegangan tinggi sebesar � 20 KVolt ? disalurkan melalui kabel busi ke busi untuk diubah menjadi pijaran api listrik.