Rabu, 23 Oktober 2019

Fungsi Booster Rem & Cara Kerjanya

Fungsi Booster Rem & Cara KerjanyaBoster rem dipasangkan menjadi satu dengan master rem (tipe integral) atau juga dapat dipasangkan secara terpisah dengan master silinder. Biasanya booster rem tipe integral ini banyak digunakan pada kendaraan penumpang atau truk kecil.
Booster Rem Tipe Integral

Fungsi Booster Rem Pada Sistem Pengereman


Boster rem merupakan salah satu dari komponen sistem rem berupa alat bantu mekanis yang berfungsi untuk melipat gandakan daya penekanan pedal rem 3 - 5 kali lipat sehingga daya pengereman yang lebih besar dapat diperoleh, karena ketika pengereman dilakukan tenaga penekanan ke pedal rem dari pengemudi tidak cukup kuat untuk segera dapat menghentikan kendaraan.

Pada semua sistem rem kendaraan modern sudah dilengkapi dengan boster rem. Sebagian besar jenis boster rem yang digunakan adalah jenis kevakuman. Vakum adalah suatu kondisi di mana tekanan area spesifik lebih rendah dari tekanan atmosfer di sekitarnya. Perbedaan tekanan dapat dimanipulasi menggunakan diafragma (katup) yang berupa membran fleksibel.

Kerja membran disebabkan karena adanya perbedaan tekanan antara tekanan dan kevakuman yang dihasilkan dari dalam intake manifold mesin. Master Rem / Master silinder dihubungkan dengan pedal rem dan membran untuk memperoleh daya pengereman yang besar dari langkah pedal minimum.

Boster rem menerima kevakuman melalui selang dan katup (katup satu arah). Katup mempertahankan tekanan vakum selama mesin mati dan menjamin booster akan memiliki kevakuman cadangan untuk 2-3 kali pengereman.

Boster rem dirancang sedemikian rupa sehingga apabila boster rem tidak bekerja dikarenakan adanya sesuatu hal, maka tenaga dari boster rem akan hilang. Dan menyebabkan hanya tenaga pedal rem saja yang bekerja.

Pada mobil bensin booster rem menggunakan tipe langsung, yaitu : Booster rem bekerja berdasarkan kevakuman intake manifold mesin yang berarti apabila mesin hidup maka booster rem bekerja. Ketika mesin mati maka booster rem tidak dapat bekerja atau tidak dapat membantu meringankan beban pedal rem.

Sedangkan booster rem pada mobil mesin diesel (solar), umumnya mengunakan pompa vakum yang diletakkan di belakang altenator atau dengan menggunakan rangkaian roda gigi tersendiri. 

Untuk kendaraan yang digerakkan oleh mesin diesel, booster remnya diganti pompa vakum karena kevakumannya yang terjadi pada intake manifold pada mesin diesel tidak cukup kuat. 

Booster rem terdiri dari rumah booster, piston booster, membran, reaction mechanism, mekanisme katup pengontrolan. Booster rem dibagi menjadi bagian depan dan belakang, dan masing-masing ruang dibatasi dengan membran dan piston booster. 


Cara Kerja Booster Rem Pada Sistem Pengereman

1. Saat Rem Tidak Gunakan
Posisi Rem Tidak Bekerja

Keterangan :

Katup udara dihubungkan ke batang operasi katup, dan ditarik ke kanan oleh pegas pembalik katup udara. Katup pengontrol didorong ke kiri oleh pegas katup pengontrol, Ini menyebabkan katup udara bersentuhan dengan katup pengontrol.

Karenanya, udara atmosfer yang mengalir melalui elemen pembersih udara dicegah memasuki ruang tekanan variabel. Pada kondisi ini katup hampa udara dari badan katup dipisahkan dari katup pengontrol untuk membuka alan antara saluran A dan saluran B.

Karena akan selalu ada hampa udara di ruang tekanan konstan, akan ada pula hampa udara di ruang tekanan variabel pada saat ini. Sebagai akibatnya, piston didorong ke kanan oleh pegas diafragma.

2. Saat Rem Digunakan
Posisi Rem Bekerja

Keterangan :

Ketika pedal rem ditekan, batang pengoperasian katup mendorong katup udara, sehingga menyebabkan katup udara bergerak ke kiri. Katup pengontrol, yang didorong melawan katup udara oleh pegas katup pengontrol, juga bergerak ke kiri sampai ia berhubungan dengan katup hampa udara.

Ini menutup bukaan antara saluran A dan B. Ketika katup udara bergerak lebih jauh ke kiri, ia bergerak menjauhi katup pengontrol. Kondisi ini membuat udara atmosfer memasuki ruang tekanan variabel melalui saluran B (setelah melewati elemen pembersih udara).

Perbedaan tekanan antara ruang tekanan konstan dan ruang tekanan variable membuat piston bergerak ke kiri, hal ini menyebabkan cakram reaksi (reaction disc) menggerakkan batang pendorong booster ke kiri dan menambah tenaga pengereman.

3. Saat Kondisi Menahan
Kondisi Menahan

Keterangan :

Bila pedal rem ditekan setengah, batang pengoperasian katup dan katup udara akan berhenti bergerak tapi piston akan tetap bergerak ke kiri karena adaperbedaan tekanan. Katup pengontrol tetap dihubungkan dengan katup hampa udara oleh pegas katup pengontrol, tapi ia bergerak bersama dengan piston.

Karena katup pengontrol bergerak ke kiri dan berhubungan dengan katup udara, udara atmosfer dicegah untuk memasuki ruangan tekanan variabel, sehingga tekanan pada ruang tekanan variabel stabil.

Akibatnya ada perbedaan tekanan yang konstan antara ruang tekanan konstan dan ruang tekanan variabel. Karenanya, piston akan berhenti bergerak dan mempertahankan tenaga pengereman yang sedang berlangsung.


4. Saat Kondisi Dorongan Maksimum
Kondisi Dorongan Maksimum

Keterangan :

Jika pedal rem ditekan seluruhnya ke bawah, katup udara akan bergerak seluruhnya menjauh dari katup pengontrol. Pada kondisi ini, ruang tekanan variabel diisi seluruhnya dengan udara atmosfer, dan perbedaan tekanan antara ruang tekanan konstan dan ruang tekanan variabel dibuat maksimum, hal ini membuat efek dorong maksimum bekerja pada piston.

Bahkan bila tenaga tambahan diberikan pada pedal rem, efek dorong pada piston akan tetap tidak berubah, dan tenaga tambahan akan diberikan hanya pada tongkat pendorong booster dan akan dikirimkan sebagaimana adanya ke silinder utama.

5. Saat Kondisi Tidak Hampa Udara :
Kondisi tidak hampa udara

Keterangan :

Jika sebuah vacuum gagal diberikan pada brake booster atas sebab apapun, maka tidak akan ada perbedaan tekanan antara ruang tekanan konstan dan ruang tekanan variable (karena keduanya akan diisi dengan udara atmosfer). Saat brake booster ada pada posisi "off", piston dikembalikan ke kanan oleh pegas diafragma. 

Tetapi, saat pedal rem ditekan, batang pengoperasi katup bergerak ke kiri dan mendorong katup udara, cakram reaksi (reaction disc) dan tongkat pendorong booster. Ini menyebabkan silinder utama piston memberikan tenaga pengereman pada rem. Pada saat yang sama, katup udara mendorong kunci stopper katup yang dimasukkan ke badan katup. 

Sehingga, piston juga akan mengatasi pegas diafragma dan bergerak ke kiri. Maka dengan itu, rem akan tetap fungsional bahkan saat tidak ada hampa udara yang diberikan pada brake booster. Tetapi, karena brake booster tidak bekerja, pedal rem akan terasa "berat".

      Sabtu, 12 Oktober 2019

      Mengenal Tentang Sistem Rem Angin

      Mengenal Tentang Sistem Rem Angin - Rem udara atau biasa dikenal dengan nama rem angin adalah sistem rem yang pengoperasiannya menggunakan udara yang bertekanan dimana rem ini memanfaatkan energi udara bertekanan untuk menjalankan sistem pengereman. Awalnya sistem rem ini dikembangkan dan digunakan pada kereta api untuk menggantikan sistem rem mekanik secara individu yang artinya satu tuas hanya untuk mengerem satu roda.

      Dengan diciptakannya sistem rem udara, kita hanya perlu menekan satu tombol atau pedal untuk membuka katup-katup agar udara bertekanan mengalir pada sistem rem sehingga brake chamber mengaktifkan brake house sampai terjadi proses pengereman. Intinya dengan menggunakan energi sekecil mungkin dapat melakukan pengereman untuk daya besar dengan bantuan udara bertekanan.


      Pada sistem pengereman yang digunakan kendaraan untuk membawa muatan besar seperti bus dan  truk tentu berbeda dengan mobil konvensional seperti sedan, SUV,.ataupu MPV. Perangkat pengereman yang digunakan harus mampu disesuaikan dengan dimensi dan bobot kendaraan yang besar. Rem bus atau truk tentunya tidak mungkin hanya mengandalkan booster rem untuk membuat efesiensi ketika pengereman seperti yang digunakan pada mobil berukuran kecil dan sedang.

      Jika rem pada kendaraan kecil adalah rem tromol yang kinerjanya dibantu oleh sistem hidrolik yang digerakkan oleh tekanan angin. Karena itu jenis rem ini juga dikenal sebagai rem angin (air brake). Umumnya rem bekerja disebabkan oleh adanya sistem gabungan penekanan melawan sistem gerak putar.

      Efek pengereman (bracking effect) diperoleh karena adanya gesekan yang ditimbulkan antara dua objek. Supaya saat pengereman tidak mengeluarkan tenaga yang besar, maka dibuatlah suatu sistem pengereman yang memakai tenaga tekanan udara. Sistem ini disebut sistem rem tekanan udara atau lebih dikenal rem udara. Sistem rem udara dilengkapi dengan sebuah kompresor untuk menghasilkan udara kompresi (udara bertekanan).

      Kompresor pada sistem rem angin digerakkan oleh mesin kendaraan. Tiap-tiap roda dilengkapi dengan perangkat rem mekanik, poros kunci - kunci rem dilengkapi dengan tuas yang berhubungan dengan batang torak dari silinder-silinder udara. Di dalam sistem rem udara tidak diperkenankan ada kebocoran, kebocoran udara dapat mengakibatkan berkurangnya daya pengereman.

      Keuntungan Pemakaian Rem Udara :

      1. Memanfaatkan udara sebagai media kerja meiliki keutungan lebih karena

      • Udara tersedia dimana saja dalam jumlah yang tak terhingga.
      • Saluran-saluran balik tidak diperlukan karena udara bekas dapat dibuang bebas ke atmosfer.
      • Udara bertekanan dapat dialirkan dengan mudah melalui saluran - saluran dengan jarak yang panjang, jadi pembuangan udara bertekanan dapat dipusatkan.
      • Dalam satu sumber tekanan, udara pada setiap cabang yang belum melalui penampang mempunyai tekanan udara yang sama. 
      • Melalui saluran-saluran cabang dan pipa-pipa selang, energi udara bertekanan dapat disalurkan kemana saja dalam sistem rem tersebut.

      2. Dapat disimpan dengan mudah

      Sumber udara bertekanan (kompresor) hanya menyalurkan udara bertekanan sewaktu udara bertekanan ini perlu digunakan. Jadi kompresor tidak perlu bekerja seperti halnya pada pompa peralatan hidrolik.

      3. Bersih dan kering

      Udara bertekanan yang digunakan adalah udara bersih. Kalau ada kebocoran pada saluran pipa, benda - benda kerja maupun bahan -  bahan disekelilingnya tidak akan menjadi kotor. Udara bertekanan yang digunakan juga merupakan udara kering, sehingga tidak menimbulkan korosi pada saluran-saluran yang terbuat dari logam.

      4. Udara tidak peka terhadap suhu

      • Udara bersih (tanpa uap air) dapat digunakan sepenuhnya pada suhu-suhu yang tinggi atau pada suhu rendah atau jauh di bawah titik beku. 
      • Udara bertekanan juga dapat digunakan pada tempat - tempat yang sangat panas, misalnya untuk digunakan pada tempa tekan, pintu - pintu dapur pijar, dapur pengerasan atau dapur lumer. 
      • Peralatan-peralatan atau saluran-saluran pipa dapat digunakan secara aman dalam lingkungan yang panas sekali, misalnya pada industri - industri baja atau bengkel-bengkel tuang (cor).

      5. Aman terhadap kebakaran dan ledakan

      Keamanan kerja serta produksi besar dari udara bertekanan tidak mengandung bahaya kebakaran maupun ledakan. Dalam ruang-ruang dengan resiko timbulnya kebakaran atau ledakan atau gas-gas yang dapat meledak dapat dibebaskan. Alat-alat pneumatik dapat digunakan tanpa dibutuhkan pengamanan yang mahal dan luas. Dalam ruang seperti itu kendali elektrik dalam banyak hal tidak diinginkan.

      6. Tidak diperlukan pendinginan fluida kerja

      Pembawa energi (udara bertekanan) tidak perlu diganti sehingga untuk ini tidak dibutuhkan biaya.
      Minyak setidak-tidaknya harus diganti setelah 100 sampai 125 jam kerja.

      7. Rasional (Menguntungkan)

      Pneumatik adalah 40 sampai 50 kali lebih murah daripada tenaga otot. Hal ini sangat penting pada mekanisasi dan otomatisasi produksi. Komponen-komponen untuk peralatan pneumatik tanpa pengecualian adalah lebih murah jika dibandingkan dengan  komponen - komponen peralatan hidrolik.

      8. Kesederhanaan (Mudah Pemeliharan)

      Karena konstruksi sederhana, peralatan-peralatan udara bertekanan hampir tidak peka gangguan.
      Gerakan-gerakan lurus dilaksanakan secara sederhana tanpa komponen mekanik, seperti tuas-tuas, eksentrik, pegas, poros sekrup dan roda gigi. Komponen-komponennya dengan mudah dapat dipasang dan setelah dibuka dapat digunakan kembali untuk penggunaan -  penggunaan lainnya.

      9. Dapat dibebani lebih

      Alat-alat udara bertekanan dan komponen-komponen berfungsi dapat ditahan sedemikian rupa hingga berhenti. Dengan cara ini komponen-komponen akan aman terhadap pembebanan lebih.
      Komponen-komponen ini juga dapat direm sampai keadaan berhenti tanpa kerugian.
      Pada pembebanan lebih, alat-alat udara bertekanan memang akan berhenti, tetapi tidak akan mengalami kerusakan. Alat-alat listrik terbakar pada pembebanan lebih.

        Jumat, 11 Oktober 2019

        Komponen Utama Rem ABS (Antilock Braking System)

        Komponen Utama ABS
        1. Sensor Kecepatan
        Sensor Kecepatan yang terletak pada setiap roda ataupun diferensial (dalam beberapa kasus), menyampaikan informasi kepada ABS ketika roda hendak mengunci. 

        2. Katup
        Di setiap rem pada jalur pengereman terdapat sebuah katup yang dikendalikan oleh ABS. Dalam beberapa sistem, katup tersebut memiliki 3 posisi :
        • Posisi satu : katup dalam keadaan terbuka dan tekanan dari master silinder diteruskan langsung ke rem.
        • Posisi dua : katup menghalangi jalur pengereman dan mengisolasi rem dari master silinder. Hal ini bertujuan untuk mencegah bertambahnya tekanan saat pengemudi menginjak pedal rem lebih dalam.
        • Posisi tiga : katup melepaskan sebagian tekanan dari rem.

        3. Pompa
        Pompa berfungsi mengembalikan tekanan yang dilepaskan oleh katup pada jalur pengereman.

        4. Kontroler
        Kontroler adalah sebuah komputer. Komponen tersebut mengawasi sensor kecepatan dan mengendalikan katup. Kontroler memantau sensor kecepatan sepanjang waktu, menunggu penurunan kecepatan putaran roda yang tidak biasa. Dalam kondisi normal, pada kecepatan sekitar 100 km per jam, sebuah mobil membutuhkan waktu sekitar 5 detik untuk berhenti sepenuhnya.

        Namun waktu yang dibutuhkan roda untuk berhenti berputar hingga terkunci, kurang dari 1 detik. Karena kontroler ABS mengetahui bahwa menghentikan kendaraan sepenuhnya sebelum roda terkunci tidak dimungkinkan, maka sesaat sebelum roda terkunci, tekanan rem akan dikurangi, dan setelah akselerasi terdeteksi, maka tekanan rem akan ditambahkan kembali, demikian seterusnya hingga mobil berhenti sepenuhnya.

        Proses tersebut terjadi dengan cepat dan menghasilkan sistem pengereman yang maksimal. Pada saat ABS bekerja, denyut yang dihasilkan dari proses buka tutup katup secara terus menerus dengan sangat cepat, dapat dirasakan kaki melalui pedal rem. Beberap sistem ABS  dapat melakukan proses tersebut hingga 15 kali per detik.